Combining the Best of Convolutional Layers and Recurrent Layers: A Hybrid Network for Semantic Segmentation
نویسندگان
چکیده
State-of-the-art results of semantic segmentation are established by Fully Convolutional neural Networks (FCNs). FCNs rely on cascaded convolutional and pooling layers to gradually enlarge the receptive fields of neurons, resulting in an indirect way of modeling the distant contextual dependence. In this work, we advocate the use of spatially recurrent layers (i.e. ReNet layers) which directly capture global contexts and lead to improved feature representations. We demonstrate the effectiveness of ReNet layers by building a Naive deep ReNet (N-ReNet), which achieves competitive performance on Stanford Background dataset. Furthermore, we integrate ReNet layers with FCNs, and develop a novel Hybrid deep ReNet (H-ReNet). It enjoys a few remarkable properties, including full-image receptive fields, end-to-end training, and efficient network execution. On the PASCAL VOC 2012 benchmark, the H-ReNet improves the results of state-of-the-art approaches Piecewise [1], CRFasRNN [2] and DeepParsing [3] by 3.6%, 2.3% and 0.2%, respectively, and achieves the highest IoUs for 13 out of the 20 object classes.
منابع مشابه
A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملLayer Recurrent Neural Networks
In this paper, we propose a Layer-RNN (L-RNN) module that is able to learn contextual information adaptively using within-layer recurrence. Our contributions are three-fold: (i) we propose a hybrid neural network architecture that interleaves traditional convolutional layers with L-RNN module for learning longrange dependencies at multiple levels; (ii) we show that a L-RNN module can be seamles...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1603.04871 شماره
صفحات -
تاریخ انتشار 2016